
ConferenceXP Research Platform: Toward an Extensible Collaborative
Environment
Michel Pahud,

Microsoft Research,
mpahud@microsoft.com

Abstract

 ConferenceXP is an initiative of Microsoft Research.
The goal of the ConferenceXP research platform
(www.conferencexp.net) is to empower researchers to
build less infrastructure and concentrate on researching
and developing rich collaborative applications for
learning and research collaborations. ConferenceXP
supports the development of real-time collaboration and
videoconferencing applications by delivering
high-quality, low-latency audio and video over
broadband connections, as well as providing a flexible
common framework for designing and implementing
collaborative applications. This paper focuses on
ConferenceXP as a collaborative platform and the
results of early prototypes of advanced real-time
applications created using this platform. These
prototypes include a collaborative Tablet PC story
creation tool for kids, a collaborative Microsoft® Visio®
diagram creation tool for technical drawing and a
real-time distributed visual assessment tool.

1. Introduction
 ConferenceXP enables developers to build a set of
interoperable solutions on top of a common framework.
With published APIs and a set of base classes, developers
and researchers can design powerful new conferencing and
collaborative environments, create custom interfaces, and
integrate ConferenceXP with existing conferencing and
classroom systems. The difficult parts of developing
collaborative applications — forming groups, managing
group state and status, dealing with network errors — are
taken care of by the ConferenceXP platform and its
services.

 ConferenceXP is a .NET-based platform that employs a
peer-to-peer architecture. Because no server is involved,
this architecture makes deployment easy, and prevents
network traffic bottlenecks and single points of failure. This
architecture uses multicast to ensure efficiency and scaling
for multipoint video conferencing over a broadband
network, as well as for sharing documents and ink over an
802.11b wireless network. It also supports unicast, via
point-to-point or a bridge, for environments where multicast
is unavailable.

2. Architecture
 The ConferenceXP architecture is divided into four
logical layers: Network Transport, Conference API,
ConferenceXP Capability, and the ConferenceXP
application (figure 1).

Figure 1: ConferenceXP architecture.

2.1 Network Transport Layer
 The Network Transport layer provides a custom
implementation of the Real-time Transport Protocol (RTP),
based on the managed implementation of Windows Sockets
(System.Net.Sockets).

 The RTP peer-to-peer network transport is an Internet
Engineering Task Force (IETF) standard for audio and
video transmission [1]. It is designed for scenarios where
low latency is required, such as high-performance
conferencing.

 To help prevent data loss in difficult network
environments, such as wireless networks in large
classrooms, ConferenceXP has implemented forward error
correction (FEC) algorithms. In addition, we are currently
working on implementing a retransmission mechanism.

2.2 Conference API Layer
 The Conference API layer enables developers to quickly
and easily create add-ons or plug-ins (known as capabilities)
and applications without concern for the networking.

 CapabilityBase encapsulates the functionality required
from other parts of the conferencing layer to create new
collaborative capabilities.

 The RTDocument API provides applications and
capabilities with a standard protocol to transfer documents
and ink strokes. By using the RTDocument protocol [2],
applications and capabilities that handle documents and ink
can interoperate with each other. The RTDocument protocol
is a Microsoft .NET runtime implementation of the
IMS/SCORM [3] interchange specification.

 ConferenceXP’s Managed DirectShow API provides a
.NET wrapper around DirectShow and Windows Media
APIs so that ConferenceXP applications and capabilities
can use multimedia devices to send/play data over the
network.

2.3 ConferenceXP Application and Capability
Layers
 The ConferenceXP Application and Capability layers
provide the user interface for ConferenceXP. The
ConferenceXP Client application enables you to interact
and collaborate with others in a virtual collaborative space,
called a venue1. Capabilities are add-in components that add
functionality to a ConferenceXP client application. Both
ConferenceXP applications and capabilities use the
Conference API. The ConferenceXP Capability layer
includes the Audio/Video and Presentation capabilities that
are included with ConferenceXP.

3. ConferenceXP Capabilities
 Now let’s take a look some examples of collaborative
applications that we have created on the top of
ConferenceXP.

 As mentioned earlier, the CapabilityBase component
allows developers to easily create new collaborative
capabilities. In fact, creating a collaborative application on
the top of ConferenceXP essentially comes down to using
simple methods and events (e.g. SendObject and
objectReceived). Figure 2 shows the communication flow
between capabilities inside ConferenceXP.

Figure 2: Capability architecture.

 Using the reflection/metadata feature of .NET,
ConferenceXP can dynamically discover capabilities that
are co-located with the ConferenceXP client. In addition,
when a participant launches a new capability locally,
ConferenceXP launches the corresponding capability on
remote participants’ machines in the same venue

1 On the network, a venue is a multicast endpoint defined by an IP
address and port.

(ConferenceXP assumes that capabilities are installed on
each participant’s machine and degrades gracefully if this is
not the case).

 After a capability has been launched, every time a
participant’s capability calls the SendObject method, an
object is sent to everybody in the venue, including the
sender itself (figure 2).

 There are two types of capabilities: Capability Channel
and Owned Capability. When a Capability Channel is
launched, instances of the capability will continue to run on
each participant’s machine (in the same venue) until
everyone has left the venue. This behavior is useful in
scenarios where the initiator starts the collaboration but
might leave when the collaboration is still active. For
example, you could imagine a chat or a shared whiteboard
session where the person who initiated it might leave before
the end.

 The behavior of an Owned Capability is that the person
who initiates the capability retains control over when the
capability terminates on all participants’ machines, either
through stopping the capability, or exiting the venue.

 The capabilities presented in this paper are Capability
Channels.

4. How Do I Create a Collaborative
Capability for ConferenceXP?
 In order to demonstrate that capabilities can be easily
created on the top of ConferenceXP, this section will show
you the steps for creating a very simple Chat capability.
After that we will explain what it takes to create a capability
that allows the exchange of ink strokes. Later in this paper
we will explain how we created more complex capabilities.
This paper is not intended to be a tutorial or a step-by-step
guide, but after this section you should have a very good feel
for how to create a capability. If you want more details
about the capabilities shown in this section, please take a
look at the ConferenceXP source code that can be
downloaded from www.conferencexp.net.

 The first example of a capability that we are going to see
is a simple Chat capability that allows you to exchange text
messages. The Chat capability will contain a txtSend
textbox to enter a message, a btnSend button to send the
message and a txtReceive textbox to see the Chat thread.
Figure 3 shows the Chat capability user interface.

Figure 3: Chat capability user interface.

 ConferenceXP is implemented in C#, but you can use
any .NET language to create capabilities. Figure 4 shows the
Chat capability code.

1 [Capability.Name("Chat")]
2 [Capability.PayloadType(PayloadType.xApplication1)]
3 [Capability.FormType(typeof(ChatFMain))]
4 [Capability.Channel(true)]
5 public class ChatCapability
6 {
 …
7 void btnSend_Click(object sender, System.EventArgs e)
8 {
9 this.SendObject(txtSend.Text);
10 }
 …
11 void objectReceived(object o, ObjectReceivedEventArgs orea)
12 {
13 if (orea.Data is String)
14 {
15 txtReceive.Text = orea.Participant.Name + ": "
16 + (string)orea.Data;
17 }
18 }
 …
19 }

Figure 4: Chat capability code in C#.

4.1. Creation and Initialization of a Simple Chat
Capability
 When creating a Windows Form-based capability (which
is the case for the Chat capability), you need to first create a
Windows application project with Microsoft Visual
Studio .NET, and then create the user interface (as shown
earlier in figure 3). You then need to add references to the
ConferenceXP DLLs (Conference, ConferenceXPInterface,
MSR.LST.Net.Rtp, and NetworkingBasics). You also need
to add a ChatCapability class in order to initialize the
capability.

 Lines 1–4 of figure 4 show the code to set attributes to
the ChatCapability class. Basically you need to set the
following attributes: the name of the capability, the payload
type, the name of the Windows form to be launched, and
whether the capability is a Capability Channel or an Owned
Capability.

 During the initialization phase, you can also specify
whether or not you want to allow separate user interfaces for
the Sender and Receiver.

4.2. Implementing Send and Receive Object of the
Chat Capability
 Now we need to implement the string exchange in the
Chat capability. ConferenceXP has a SendObject method

and an objectReceived event handler that allow developers
to easily create capabilities that send/receive messages in a
multicast group while hiding the complexity of RTP layer,
managing sessions/venues/participants and remote
launching of capabilities. This is where ConferenceXP
really helps you to concentrate on your collaborative
capability development, and allows you to quickly create
new capability prototypes. Note that capabilities developers
can actually choose between a synchronous and
asynchronous version of the SendObject method.

 From an implementation point of view, you simply need
to send the text entered in the txtSend textbox by using the
SendObject method when the btnSend button is clicked;
Lines 7–10 of figure 4 show you the corresponding code.
You now need to implement the objectReceived event
handler in order to get the messages and display them on
txtReceive textbox; Lines 11–18 of figure 4 shows the
corresponding code.

 Notice that orea.Participant.Name allows you to get the
name of the sender. The Chat capability example only uses
this information to display the participant name with each
message, but you can imagine many uses, including various
types of filtering based on a participant’s name. In
ConferenceXP every participant also receives their own
messages because they are part of the multicast group. This
is the behavior we want for Chat capability; however you
might need to filter out your own messages in more
advanced collaborative application; for example if you have
a shared whiteboard you definitely want to filter out your
own stroke to avoid having the stroke drawn twice on the
sender side. If you need to filter out your own strokes, you
can do so by comparing orea.Participant that contains the
owner of the message received with the local participant
Conference.LocalParticipant.

 The member variable orea.Data allows you to check the
object type received (line 13 in figure 4). In the Chat
capability example the objects sent are string objects only,
but in a more advanced collaborative capability you should
create custom objects. If your capability uses strokes or
documents you can use the RTStroke and RTDocument
classes, which enables your application to interoperate with
other capabilities that also use these classes. We will get
back to this later on in the paper.

 This is basically all you need to do to create a Chat
capability. Now, let’s take a look at some more advanced
capabilities that support ink.

4.3. Capabilities with Ink Support
 The Tablet PC is a great tool in collaborative
environments because of the natural interaction that they
offer. You can imagine a lot of ink-oriented collaborative
applications.

 You need to use 2 additional components to create
capabilities with ink support: The Tablet PC API and the
ConferenceXP RTStroke object.

Tablet PC API
 We will first give you a little bit of background on the
Tablet PC SDK events and methods that are commonly used
for collaborative applications. If you are already familiar
with Tablet PC development, please feel free to skip this
section.

 In your capability application you need to add a reference
to Microsoft.Ink, add the using statement to it, and initialize
an inkCollector object.

 After that you can use one of the Tablet PC events:
NewPackets, Stroke, and StrokesDeleting. All of these
events give you the corresponding stroke (or strokes)
through event arguments. Here is a summary of Tablet PC
events you would need to handle when creating an
ink-oriented collaborative application:
• NewPackets event - This event occurs many times

while a stroke is being drawn. The NewPackets event
should be used when a collaborative application needs
to have the strokes appearing in real-time in the remote
participant’s machines while there are drawn.

• Stroke event - This event is fired only once at the
completion of a stroke. The simplified sample
presentation application that come out-of-the-box with
ConferenceXP uses Stroke events.

• StrokesDeleting event – This event is fired when the
user deletes a stroke (and before the stroke is actually
deleted).

 In addition, you need some Tablet PC methods to
programmatically add or remove strokes on the remote
participant’s machine:
• AddStrokesAtRectangle method - This method can

be used to programmatically add a stroke on the remote
machine(s).

• DeleteStroke method – This method can be used to
programmatically delete a stroke on the remote
machine(s).

ConferenceXP RTStroke Support
 ConferenceXP has an RTStroke class to help you manage
ink-oriented collaborative capabilities. You can place the
stroke into the RTStroke object to be able to interchange
strokes with other ink-oriented capabilities. In addition,
using an RTStroke object allows you to assign a GUID to
each stroke, which is needed when you want to implement
stroke deletion in a collaborative environment. The
RTStroke class also takes care of stroke serialization for you.
There is a special object named RTStrokeRemove that
allows you to request stroke deletion.

 Using the Tablet PC API and ConferenceXP RTStroke
class allows you to easily create ink-based collaborative
capabilities; you simply have to add the code to call the
SendObject(RTStroke) method to send the stroke object
when the Stroke (or NewPackets) event is fired. Similarly
when a stroke is deleted, the Tablet PC event

StrokesDeleting is fired, so you can call the
SendObject(RTStrokeRemove) method to inform the remote
participants that the stroke deleted no longer exists.
 Figure 5 shows how a whiteboard capability works: steps
1–4 show what happens when participant A draws a first
stroke (with GUID1); steps 5–8 show what happens when
participant A draws a second stroke (with GUID2); steps 9
-12 show what happens when participant B deletes the first
stroke of participant A (the one with GUID1).

SendObject(RTStroke
with GUID1)

ObjectReceived
event

Participant draw a
stroke

=> Stroke event fired

Whiteboard: Participant A Whiteboard: Participant B

orea.Data is RTStroke
=>

Call
AddStrokesAtRectangle

stroke with GUID1

Participant draw
another stroke

=> Stroke event fired

SendObject(RTStroke
with GUID2)

ObjectReceived
event orea.Data is RTStroke

=>
Call

AddStrokesAtRectangle
stroke with GUID2

Participant delete
stroke GUID1

=> StrokesDeleting
event fired

SendObject(RTStrokeRemove
with GUID1)

ObjectReceived
event

orea.Data is
RTStrokeRemove

=>
Call DeleteStroke with

GUID1

Time

1

2

3 4

5
6

7 8

9

10

11

12

Figure 5: Stroke exchanges on the top of ConferenceXP.

 ConferenceXP has also a class named RTDocument that
enables interoperability between document-based
capabilities. This class describes documents with metadata,
a table of contents and associated pages. Like strokes, each
page has a unique GUID. The presentation capability (also
known as “CXP Presentation”) that is installed with the
ConferenceXP client is a good example of a capability that
uses RTStroke and RTDocument class.

4.4. Audio/Video Capabilities
 The collaborative capabilities are not CPU or bandwidth
intensive; however Audio/Video capabilities are CPU and
bandwidth intensive. For performance reasons the
Audio/Video capabilities do not use SendObject and

objectReceived, but instead use custom DirectShow filters
to access the network directly.
 ConferenceXP is capable of 5-way videoconferencing in
full screen and 30fps with a dual processor 3.0Ghz
workstation. Figure 6 shows a snapshot of a 4-way
videoconference running.

 Figure 6: Snapshot of a 4-way videoconference.

5. Prototypes of Advanced Collaborative
Capabilities
 So far we have shown you examples of simple
capabilities in order to explain the basics of ConferenceXP’s
capability support. To validate ConferenceXP as a platform
that enables the creation of rich collaborative applications,
we created more advanced applications in various fields: a
collaborative Tablet PC story creation tool for kids, a
collaborative Microsoft® Visio® diagram creation, and a
distributed visual assessment tool.

5.1. A Collaborative Tablet PC Story Creation Tool
for Kids
 This capability, adapted from a stand alone application,
allows kids to collaboratively create scenes of a story by
placing, sizing, and rotating 3D objects, adding dialog boxes,
and painting it (figure 7). In order to make this application
collaborative on the top of ConferenceXP, we just needed to
modify the strokes behavior of the stand alone version in
order to exchange them as described earlier in section 4.3. In
this capability we suppose that each participant has the 3D
graphics objects library, so we created an additional custom
object to embed the position/rotation/size of 3D objects in
order to be able to communicate this information in
real-time through ConferenceXP using the SendObject
method. We also use color-coding to determine if the 3D
object displayed on the scene has been created by the local
or remote participant; we can know this information using
Conference.LocalParticipant. And that’s it! The
modifications to turn this stand alone application into a
collaborative capability were done in only a few hours.

Figure 7: A collaborative Tablet PC Story Creation Tool.

5.2. A Collaborative Visio Capability
 Similarly, we created a Visio capability where the Visio
shapes are shared among participants. Besides writing a
custom mapping for describing Visio objects, we also
implemented per-participant color-coding, as well as remote
participant shape hiding (figure 8).

Figure 8: Snapshot of the collaborative Visio capability.

5.3. A Distributed Visual Assessment Capability
 We created a distributed visual assessment tool based on
XML formatted assessment games description that a
professor can generate with several authoring tools; so far
we have a Natural Language Processor (NLP) authoring tool
to create language learning games and a wizard to generate
other types of assessment games. We designed a custom
XML object representing the game as well as a custom
object representing the score. Figure 9 shows the process
where a professor creates and distributes an assessment
game using our custom XML object (steps 1–6) and where
students play and the score is returned to the professor in
real-time using our custom score object (steps 7–9).

SendObject(XML object
representing the game)

A professor use one of
our authoring tool to

create an visual
assessment game

Professor Students

ObjectReceived
event

The students are
informed of the new
assessment game

Students play the
game (it uses a local
library of graphics)SendObject(Score object)

ObjectReceived
eventThe professor can

observe student’s
scores (weakness/

strength) in real time
and interact

The professor
distribute the

assessment game

Time

1

2

3

4 5

6

7

8
9

Figure 9: A distributed assessment tool.

6. Improvements and Challenges
 A next step would be to use generic constraint solvers in
order to allow collaborative participants to add constraints
on their environment. Constraints enable you to minimize
the communication traffic between participants. A trivial
example of use for generic constraint solvers would be to
inform a participant working on designing the outside part
of a car in a Visio technical drawing that another participant
is designing the engine of the car bigger than the outside of
the car. In this simple scenario you can easily imagine that
constraints would decrease the communication between
participants (because the designer of the outside part of the
car doesn’t have to periodically ask the engine designer the
size of the car engine).

7. Related Work
 Access Grid [4] is another interesting collaborative
platform that has a lot in common with ConferenceXP. The
audio/video aspects of ConferenceXP and Access Grid are
very similar – they both use a peer-to-peer architecture,
multicast over RTP, and support the concept of virtual
venues.

 Like ConferenceXP, Access Grid also provides support
for non-A/V collaboration, through support for Shared
Applications, which are analogous to Capabilities in
ConferenceXP. While the goals and applications are quite
similar, the architectural design for ConferenceXP
Capabilities and Access Grid Shared Applications is quite
different. ConferenceXP uses the same network transport
(multicast over RTP) to support both A/V and Capabilities.

In contrast, Access Grid uses a client/server, TCP/IP
architecture for Shared Applications.

 Another difference between ConferenceXP and Access
Grid is that Access Grid is designed to persist more state and
application data (at the Venue Server), while ConferenceXP
is designed with ease of deployment in mind, and does not
require a complicated server infrastructure.

 ConferenceXP has been successfully used in many
collaborative projects between Microsoft Research and
universities. Many innovative capabilities have been created
by universities, including Classroom Presenter at the
University of Washington [5] and ReMarkable Texts at
Brown University [6]. More information about
collaborative work with universities can be found in the
Research section [7] on the ConferenceXP community site.

8. Conclusions
 You can imagine thousands of innovative collaborative
applications that would fit in real-world scenarios. However,
you can not fully validate your ideas without creating
working collaborative prototypes and having participants
using it. We showed you in this paper that the
ConferenceXP research platform is a powerful tool to
enable researchers to very quickly and easily create new
innovative advanced real-time collaborative applications in
order validate ideas with participants in real-world
scenarios.

Acknowledgements
 We would like to express gratitude to all strong
contributors on the Microsoft Research team that make
ConferenceXP a great success: Chris Moffatt, Jason Van
Eaton, Jay Beavers, Patrick Bristow, and Tim Chou.
Without them, ConferenceXP would not be here today. In
addition, we are grateful to the University Relations group
at Microsoft Research for supporting this project.
 We would like also to express our gratitude to Takako
Aikawa and Lee Schwartz from the NLP Research group for
their great contribution in the NLP assessment game
generator.

References
[1] IEFT specification for RTP: http://rfc.net/rfc3550.html
[2] ConferenceXP RTDocuments Specification

http://www.conferencexp.net/community/library
/RTDocsSpecification.htm

RTDocuments Talk, given by Jay Beavers

http://www.conferencexp.net/community/library/producer
/RTDocumentsTalk/RTDocumentsTalk_files/Default.htm

[3] IMS standards http://www.imsproject.org.

 Advance Distributed Learning (ADL) initiative and Sharable
Content Object Reference Model (SCORM) www.adlnet.org.

[4] Access Grid site http://www.accessgrid.org

[5] http://www.cs.washington.edu/education/dl/presenter/papers.html

[6] http://www.cs.brown.edu/research/graphics/research/ReMarkableTexts

[7] Research section of ConferenceXP community site
http://www.conferencexp.net/community/Default.aspx?tabindex=4
&tabid=67

http://rfc.net/rfc3550.html
http://www.conferencexp.net/community/library/RTDocsSpecification.htm
http://www.conferencexp.net/community/library/RTDocsSpecification.htm
http://www.conferencexp.net/community/library/producer/RTDocumentsTalk/RTDocumentsTalk_files/Default.htm
http://www.conferencexp.net/community/library/producer/RTDocumentsTalk/RTDocumentsTalk_files/Default.htm
http://www.imsproject.org/
http://www.adlnet.org/
http://www.accessgrid.org/
http://www.cs.washington.edu/education/dl/presenter/papers.html
http://www.cs.brown.edu/research/graphics/research/ReMarkableTexts
http://www.conferencexp.net/community/Default.aspx?tabindex=4&tabid=67
http://www.conferencexp.net/community/Default.aspx?tabindex=4&tabid=67

	Introduction
	Architecture
	Network Transport Layer
	Conference API Layer
	ConferenceXP Application and Capability Layers

	ConferenceXP Capabilities
	As mentioned earlier, the CapabilityBase component allows de

	How Do I Create a Collaborative Capability for ConferenceXP?
	4.1. Creation and Initialization of a Simple Chat Capability
	4.2. Implementing Send and Receive Object of the Chat Capabi
	4.3. Capabilities with Ink Support
	4.4. Audio/Video Capabilities

	Prototypes of Advanced Collaborative Capabilities
	5.1. A Collaborative Tablet PC Story Creation Tool for Kids
	5.2. A Collaborative Visio Capability
	5.3. A Distributed Visual Assessment Capability

	Improvements and Challenges
	Related Work
	Conclusions

